Extensions 1→N→G→Q→1 with N=C14 and Q=C22⋊C4

Direct product G=N×Q with N=C14 and Q=C22⋊C4
dρLabelID
C14×C22⋊C4112C14xC2^2:C4224,150

Semidirect products G=N:Q with N=C14 and Q=C22⋊C4
extensionφ:Q→Aut NdρLabelID
C141(C22⋊C4) = C2×D14⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Aut C14112C14:1(C2^2:C4)224,122
C142(C22⋊C4) = C2×C23.D7φ: C22⋊C4/C23C2 ⊆ Aut C14112C14:2(C2^2:C4)224,147

Non-split extensions G=N.Q with N=C14 and Q=C22⋊C4
extensionφ:Q→Aut NdρLabelID
C14.1(C22⋊C4) = Dic14⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Aut C14562C14.1(C2^2:C4)224,11
C14.2(C22⋊C4) = C23.1D14φ: C22⋊C4/C2×C4C2 ⊆ Aut C14564C14.2(C2^2:C4)224,12
C14.3(C22⋊C4) = C14.D8φ: C22⋊C4/C2×C4C2 ⊆ Aut C14112C14.3(C2^2:C4)224,15
C14.4(C22⋊C4) = C14.Q16φ: C22⋊C4/C2×C4C2 ⊆ Aut C14224C14.4(C2^2:C4)224,16
C14.5(C22⋊C4) = C28.44D4φ: C22⋊C4/C2×C4C2 ⊆ Aut C14224C14.5(C2^2:C4)224,22
C14.6(C22⋊C4) = D14⋊C8φ: C22⋊C4/C2×C4C2 ⊆ Aut C14112C14.6(C2^2:C4)224,26
C14.7(C22⋊C4) = C2.D56φ: C22⋊C4/C2×C4C2 ⊆ Aut C14112C14.7(C2^2:C4)224,27
C14.8(C22⋊C4) = C28.46D4φ: C22⋊C4/C2×C4C2 ⊆ Aut C14564+C14.8(C2^2:C4)224,29
C14.9(C22⋊C4) = C4.12D28φ: C22⋊C4/C2×C4C2 ⊆ Aut C141124-C14.9(C2^2:C4)224,30
C14.10(C22⋊C4) = D284C4φ: C22⋊C4/C2×C4C2 ⊆ Aut C14564C14.10(C2^2:C4)224,31
C14.11(C22⋊C4) = C14.C42φ: C22⋊C4/C2×C4C2 ⊆ Aut C14224C14.11(C2^2:C4)224,37
C14.12(C22⋊C4) = C28.55D4φ: C22⋊C4/C23C2 ⊆ Aut C14112C14.12(C2^2:C4)224,36
C14.13(C22⋊C4) = D4⋊Dic7φ: C22⋊C4/C23C2 ⊆ Aut C14112C14.13(C2^2:C4)224,38
C14.14(C22⋊C4) = C28.D4φ: C22⋊C4/C23C2 ⊆ Aut C14564C14.14(C2^2:C4)224,39
C14.15(C22⋊C4) = C23⋊Dic7φ: C22⋊C4/C23C2 ⊆ Aut C14564C14.15(C2^2:C4)224,40
C14.16(C22⋊C4) = Q8⋊Dic7φ: C22⋊C4/C23C2 ⊆ Aut C14224C14.16(C2^2:C4)224,41
C14.17(C22⋊C4) = C28.10D4φ: C22⋊C4/C23C2 ⊆ Aut C141124C14.17(C2^2:C4)224,42
C14.18(C22⋊C4) = D42Dic7φ: C22⋊C4/C23C2 ⊆ Aut C14564C14.18(C2^2:C4)224,43
C14.19(C22⋊C4) = C7×C2.C42central extension (φ=1)224C14.19(C2^2:C4)224,44
C14.20(C22⋊C4) = C7×C22⋊C8central extension (φ=1)112C14.20(C2^2:C4)224,47
C14.21(C22⋊C4) = C7×C23⋊C4central extension (φ=1)564C14.21(C2^2:C4)224,48
C14.22(C22⋊C4) = C7×C4.D4central extension (φ=1)564C14.22(C2^2:C4)224,49
C14.23(C22⋊C4) = C7×C4.10D4central extension (φ=1)1124C14.23(C2^2:C4)224,50
C14.24(C22⋊C4) = C7×D4⋊C4central extension (φ=1)112C14.24(C2^2:C4)224,51
C14.25(C22⋊C4) = C7×Q8⋊C4central extension (φ=1)224C14.25(C2^2:C4)224,52
C14.26(C22⋊C4) = C7×C4≀C2central extension (φ=1)562C14.26(C2^2:C4)224,53

׿
×
𝔽